

SIC/SIC COMPOSITES FOR APPLICATIONS ABOVE 2600°F

J.A. DiCarlo and R.T. Bhatt NASA Glenn Research Center Cleveland, Ohio

Research Supported by the

NASA Ultra Efficient Engine Technology (UEET) Program
NASA Glenn Internal Research & Development Fund

Presented at 28th Annual Conference on Composites, Materials, and Structures RESTRICTED SESSIONS Cape Canaveral, Florida, January 26, 2003

Key Words: SiC/SiC composites, constituents, processes, creep-rupture, thermal conductivity, high temperature

Abstract

SiC/SiC Composites for Applications above 2600°F

J.A. DiCarlo* and R.T. Bhatt NASA Glenn Research Center, Cleveland, OH

Using data from panels with 2D-woven architectures, this presentation describes progress in identifying advanced constituent materials and processes for achieving a high conductivity SiC/SiC composite system with long-term structural life under oxidizing conditions at temperatures above 2600°F. A key factor for this progress is the development of approaches at NASA GRC that allow the constituent SiC fiber and SiC matrix to display high thermal conductivity, high creep-rupture resistance, and high microstructural stability at temperatures above 3000°F. Another important factor is the avoidance of free silicon in the SiC matrix, thereby providing the composites with the capability for extended service above the silicon melting point (2550°F). The effects of utilizing various materials and processes for the SiC matrix are presented and discussed.

Introduction

A major thrust under a variety of NASA aerospace component development programs such as UEET and NGLT is to develop and demonstrate *constituent materials and processes* that allow the fabrication of *ceramic matrix composites* with

Optimized structural and environmental durability properties up to <u>as high a temperature as possible</u> in order to allow

- Longer life at lower temperatures
- More reliable operation in case of EBC/TBC loss
- Reduction of EBC/TBC thickness requirement
- Enabling of new high temperature applications

SiC/SiC Advantages for High Temperature CMC Aerospace Applications

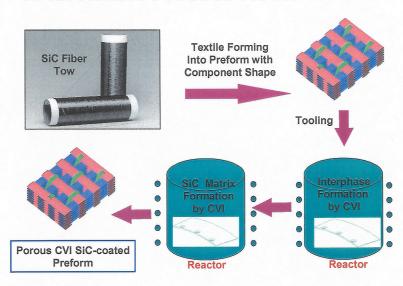
Versus Oxide/Oxide Ceramic Composites:

- Higher strength, temperature capability, creep-rupture resistance, thermal conductivity
- Lower permeability

Versus Carbon Fiber Composites (C/SiC, C/C):

- Higher oxidative durability, thermal conductivity, more predictable life
- Lower permeability due to F/M CTE match

But until recently, SiC/SiC limited to ~2200°F due to intrinsic SiC fiber and SiC matrix thermal stability and creep-rupture issues



Objective / Outline

- Present brief review of NASA efforts to demonstrate advanced fiber and matrix materials and processes that allow SiC/SiC systems with long life to 2400°F
- Present results of current efforts to push SiC/SiC materials and processes beyond 2600°F

NASA Basic Process Route for SiC/SiC

Process Advantages

- CVI SiC is dense, highly conductive, creep resistant constituent
- CVI SiC volume fraction can be varied from ~1 to >50 %
- Pores can then be filled by multiple processes (CVI, MI, PIP, etc.)
- Process route is robust and can be practiced by multiple vendors

SiC/SiC Systems Developed under NASA EPM and UEET Programs

System Code: N = NASA, xx = Upper Use Temperature (°F) / 100 Upper Use Temperature: Rupture time >500 hours in air under a design tensile stress ~60% of elastic limit

	N22	N24A	N24C
	(EPM MI)	(UEET 01/01)	(UEET 01/03)
Upper Use Temperature	2200°F	2400°F	2400°F
Fiber	Sylramic	Sylramic-iBN	Sylramic-iBN
Interphase	BN-based	BN-based	BN-based
CVI SiC Matrix Content	~20 vol. %	~20 vol. %	~35 vol. % (annealed)
Pore Filler	SiC slurry	SiC slurry	MI Si
	+ MI Si	+ MI Si	

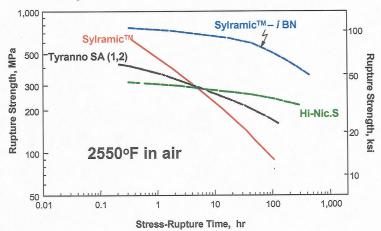
NASA Approach for SiC/SiC Demonstration

2D Panel Fabrication:

- 5HS 0/90 SiC fabric with balanced ends per inch
- ~35 to 40 total fiber vol. % at panel thickness of ~80 mil

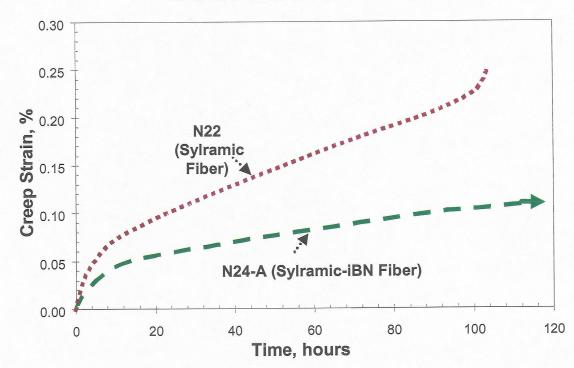
Key Tests for Fiber-Matrix Capability

- Tensile coupons cut from panels with no edge seal coatings and tested in air in 0° direction for
 - Stress-Strain at room temperature
 - Creep and rupture behavior at goal temperatures
- Thru-thickness Thermal conductivity

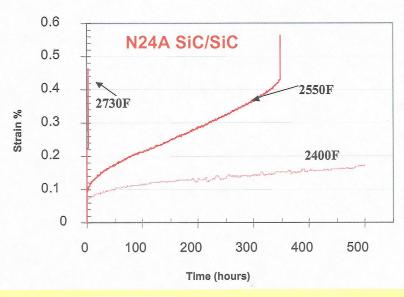

Key Goals

- Rupture time >500 hours at stresses ~60% of elastic limit
- Thermal conductivity near that of best SiC/SiC (CVI + MI)

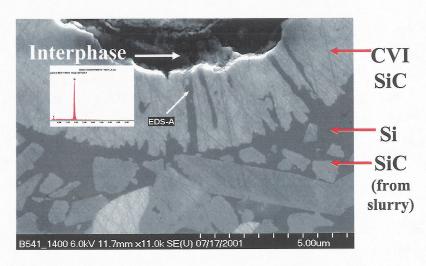
NASA-Developed Treatment for Sylramic Fibers


- Forms thin protective in-situ BN coating on fiber surface
- Retains high strength and thermal conductivity of Sylramic
- Yields Sylramic-iBN Fiber with best high-temperature creep and rupture resistance for any SiC fiber

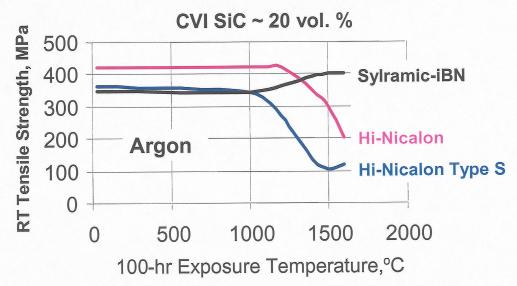
NASA-AF collaborative-funding activities currently exist with ATK COI Ceramics for transfer of Sylramic-iBN technology and commercialization of Sylramic and Sylramic-iBN fibers in early 2004.



Creep-Rupture of N22 and N24A (CVI+MI) SiC/SiC at 2400°F in air at 15 Ksi


Creep-Rupture of N24A (CVI+MI) SiC/SiC in air at 15 Ksi

Lifetimes of C/SiC under ~ same conditions are ~ 1 hr


Fiber-matrix Region for N24A (CVI + MI) SiC/SiC Exposed In Argon at 2550°F for 100 Hours

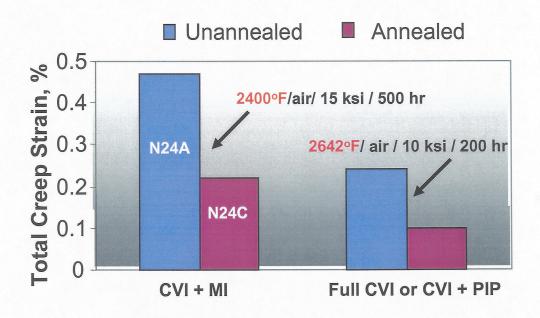
For CVI + MI matrices near the Si melting point, SiC fibers begin to lose strength and CVI matrices creep more due to Si diffusion through CVI SiC and BN interphase

NASA

Thermal Stability of Porous CVI SiC Preforms

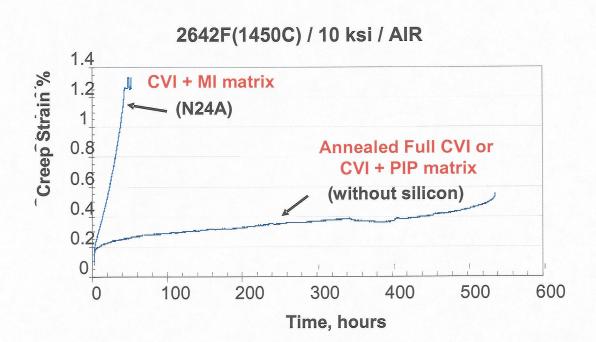
Intrinsic thermal stability of Sylramic-iBN SIC fiber allows

- Highest temperature capability for CVI SiC matrix composites
- Possibility for annealing total composite system to enhance
 SiC matrix performance without loss in composite strength

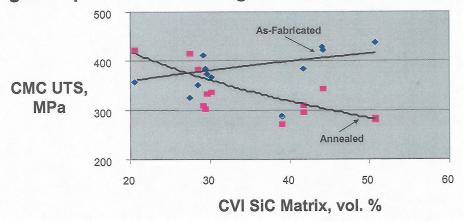


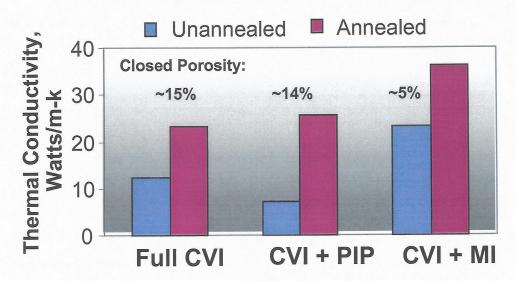
NASA Current Approaches for 2600°F and beyond SiC/SiC Systems

- Continue to use Sylramic-iBN SiC fiber and CVI BN-based interphase
- Continue to use dense CVI SiC matrices to provide environmental protection, creep-rupture resistance, thermal conductivity, and multi-directional performance.
- But use Si-free matrix processes to fill CVI SiC porosity.
- Matrix materials/processes for this presentation:
 - Full CVI SiC from GEPSC with ~50 vol % CVI SiC
 - CVI + PIP SiC from Starfire with ~35 vol % CVI SiC
 - High Temperature Annealing of final panels to remove matrix defects and improve CMC creeprupture resistance and thermal conductivity



Annealing Effects on Creep for Various Sylramic-iBN SiC/SiC Systems


Creep-Rupture Comparison at 2642°F for Various Sylramic-iBN SiC/SiC Systems


Issues with High Content CVI SiC Matrices

- · CVI SiC cannot adequately fill intertow spaces, resulting in
 - · High content of closed porosity
 - Low thermal conductivity
 - · Low matrix cracking strength
- Also, due to low temperature deposition, CVI SiC typically contains free silicon which can attack SiC fibers during high temperature annealing of the matrix and CMC

Thru-Thickness Thermal Conductivity at 20°C of Sylramic-iBN CMC with Various Matrix Types

Annealed SiC/SiC with medium CVI plus PIP matrix currently shows best combination of high UTS, long structural life above 2600°F, and good thermal conductivity

Summary and Conclusions

- NASA has demonstrated state-of-the-art <u>high-temperature</u>
 SiC/SiC composites by developing advanced materials
 and process technologies
- Key technologies are the development of the *Sylramic-iBN SiC fiber* and *high temperature annealing of the total SiC/SiC system* to significantly improve matrix properties (thermal conductivity, creep-rupture resistance)
- For long-term operation above 2600°F, the *Sylramic-iBN* fiber with a porous medium-content CVI matrix that is filled with a Si-free PIP-derived filler currently appears to be a promising system direction, but porosity issues still need to be addressed.
- NASA technologies discussed here are available for transfer, and resulting fiber and CMC property data-bases are being incorporated in MIL 17 CMC Handbook.

Future Directions

- On-going NASA research efforts for high-temperature SiC/SiC aerospace components are currently seeking more creep and rupture resistant SiC fibers, lower porosity and higher conductivity SiC matrices and BN-based interphases, and improved processes for forming the complex fiber architectures required for many components.
- Because dense CVI SiC matrices provide environmental protection, high creep-rupture resistance, high thermal conductivity, and multidirectional structural performance, they are being used as the <u>prime matrix constituent</u> with a variable content that is being filled with Si-free hightemperature fillers.